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1. Introduction

Quantum computer

IBM Q𝛼 0 + 𝛽 1

Unit of information: 
→Qubit 

1

0

New computational methods that have 
been developed recently.

Simulation of Quantum Physics

• Quantum many body system

• Lattice quantum field theory

When analytical calculations are not feasible, 
observables 𝒪 are computed numerically

Energy, correlation function etc

apply

Today’s topic : 

Efficiently extracting many physical observables from a quantum computer.
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1. Introduction

Why do we need quantum computers?

The sign problem

• In lattice QFT, people use the path-integral formalism and observables are typically evaluated 

using Monte Carlo integration

• At finite chemical potential or real-time dynamics, the path-integral weight becomes complex.

• As a result, important sampling breaks down → sign problem

2/26



1. Introduction

Why do we need quantum computers?

The sign problem

• In lattice QFT, people use the path-integral formalism and observables are typically evaluated 

using Monte Carlo integration

• At finite chemical potential or real-time dynamics, the path-integral weight becomes complex.

• As a result, important sampling breaks down → sign problem

The limitations of tensor networks
• To circumvent the sign problem, researchers are turning to the Hamiltonian formalism.

• Tensor network methods work well in (1+1)D systems where the entanglement follows an 

area law.

• However, they become inefficient in higher dimensions or in systems exhibiting volume-law 

entanglement, where the required bond dimension grows rapidly.
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1. Introduction

Why do we need quantum computers?

The sign problem

The limitations of tensor networks

Quantum computers can solve 
these problems.

Quantum computers

• Quantum computers are the computers built from quantum-mechanical components 

that obey the laws of quantum mechanics.

• An 𝑛-qubit system can represent a 2𝑛-dimensional Hilbert space directly. 

• They are free from the sign problem. 

• Highly entangled states can be prepared naturally. 

• Real-time quantum dynamics is implemented directly as unitary time evolution.

=Qubits
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1. Introduction

𝐻 =
1

2

1 1
1 −1

, 𝑋 =
0 1
1 0

, 𝑌 =
0 −𝑖
𝑖 0

, …

Quantum states

1-qubit state    : 𝜓 = 𝛼1 0 + 𝛼2 1

2-qubits state  : 𝛼00 00 + 𝛼01 01 + 𝛼10 10 + 𝛼11 11

⋮

Super position 

Basic quantum gate operators

𝐶𝑁𝑂𝑇 = 0 0 ⊗ 1 + 1 1 ⊗ 𝑋, …

𝜓 𝑈 𝑈 𝜓

Quantum circuit notation 

𝑈 = 𝐻,𝑋, 𝑌… etc

𝐶𝑁𝑂𝑇 =

Basics of quantum computer

※Arbitrary unitary operators can be written in terms of basic quantum gates.
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1. Introduction

Quantum computation consists of three essential steps:

(1)Prepare an initial state 0 ⊗𝑛

(2)Apply a sequence of quantum gates

(3)Measure in the computational basis

(1) (2) (3)

By repeatedly performing these three steps and collecting statistics from the measurement 
outcomes, we carry out quantum computation.

Outcome 

𝑏1𝑏2…𝑏𝑛
↑binary number
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1. Introduction

The simple example : calculation of 𝑍

0 𝑈

Let us consider estimating expectation value 𝑍 for the quantum state 𝜓 = 𝑈 0 .

𝜓 = 𝛼 0 + 𝛽 1

Outcomes :
0 with probability 𝛼 2

1 with probability 𝛽 2
(measurement)

Repeating this experiment many times, we can estimate 𝛼 2 and 𝛽 2 by 

𝛼 2 ≈
𝑁0

𝑁shots
, 𝛽 2 ≈

𝑁1
𝑁shots

𝑁shots : the total number of experiments
𝑁0/1 : the number of measurement outcome 0/1 

Then, the expectation value 𝑍 is estimated as follows; 

𝑍 = 𝛼 2 − 𝛽 2 ≈
𝑁0 −𝑁1
𝑁shots
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1. Introduction

When we extend to multi-qubits systems, the computational possibilities expand dramatically.

By introducing ancilla qubits (auxiliary qubits), we can implement more sophisticated operations.

Examples of quantum algorithms: 

• Hadamard test : estimation of 𝑈 for arbitrary unitary 𝑈

• SWAP test : estimation of 𝜓 𝜙

• Quantum Fourier transform : discrete Fourier transformation

• Phase estimation : estimation of eigenvalue of unitary operator

• Grover’s algorithm : search algorithm for solution 𝑓 𝑥 = 1

Hadamard test : 

ancilla qubits→ → 𝑈

These quantum algorithms enable us to estimate relevant quantities and address 
specific computational tasks.
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1. Introduction

Let me consider the following goal.

• Naively, we need to design and execute 𝑀 different quantum circuits.
→△We must perform 𝒪 𝑀 measurements.

• Many algorithms also require ancilla qubits, increasing the total number of qubits and circuit depth.
→△Current quantum computers are still small and contain noise.

• The required gate are often complex and difficult to implement on near term quantum computers.

Problems

We can estimate individual 𝒪𝑖 by known quantum algorithm (e.g. Hadamard test)
However…

Goal : Estimating 𝑀 different physical observables, where 𝑀 is large.

𝒪𝑖 = Tr 𝒪𝑖 𝜌 , 𝑖 = 1,2, …𝑀 ≫ 1
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1. Introduction

Quantum state tomography is Not efficient for estimating many observables

• Needs to measure in many different basis (Pauli X, Y, Z) 

→△Required the number of measurements is 𝒪 3𝑛 for 𝑛-qubits system.

• Postprocessing is computationally expensive (= 𝒪 4𝑛 )

→△Impractical for large system.

Problems

Quantum state tomography : reconstructing the full density matrix 𝜌 of a quantum system.

…𝜌

𝑋, 𝑌, 𝑍

𝑋, 𝑌, 𝑍

𝑋, 𝑌, 𝑍

𝜌 =
1

2𝑛
෍

𝑖=1

4𝑛

𝑃𝑖 𝑃𝑖

𝑃𝑖 ∈ 𝐼, 𝑋, 𝑌, 𝑍 𝑛

[Sugiyama-Turner-Murao 2013]
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1. Introduction

Goal : Estimating 𝑀 different physical observables, where 𝑀 is large.

𝒪𝑖 = Tr 𝒪𝑖 𝜌 , 𝑖 = 1,2, …𝑀 ≫ 1

Estimating 𝒪𝑖 by know quantum 
algorithm

• 𝑀 different quantum circuits
• # of measurement ~𝒪 𝑀
• Ancilla qubits
• Complex gate operation

challenging

Quantum state tomography

We can estimate 𝜌 directly but, 

• # of measurement ~𝒪 3𝑛

• Classical postprocessing cost ~𝒪 4𝑛

challenging
(Not scalable)

Are there efficient ways to estimate many observables from a quantum system?
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Goal : Estimating 𝑀 different physical observables, where 𝑀 is large.

𝒪𝑖 = Tr 𝒪𝑖 𝜌 , 𝑖 = 1,2, …𝑀 ≫ 1

Estimating 𝒪𝑖 by know quantum 
algorithm

• 𝑀 different quantum circuits
• # of measurement ~𝒪 𝑀
• Ancilla qubits
• Complex gate operation

challenging

Quantum state tomography

We can estimate 𝜌 directly but, 

• # of measurement ~𝒪 3𝑛

• Classical postprocessing cost ~𝒪 4𝑛

challenging
(Not scalable)

Are there efficient ways to estimate many observables from a quantum system?

Classical shadow [Huang-Kueng-Preskill 2020]
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1. Introduction

Short summary of classical shadow

• Estimates 𝑀 different physical observables from only 𝒪 log𝑀 measurements.

→Exponential speed up

• Dones not use ancilla qubits or multiple copies of system.

→ The number of required qubits is minimal.

• Requires only shallow randomized circuits

→ Suitable for current quantum devices

• The authors demonstrate its effectiveness across various observables, 

including  two-point correlation functions, energy, and entanglement entropy.
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2. Classical shadow

Before introducing the algorithm of classical shadow, let me explain a intuition.

3d object
(unknown)

light

(we can know)

We cannot reconstruct the 3d object from single shadow. 

Reconstructing a 3d object from 2d shadows.

shadow
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2. Classical shadow

Before introducing the algorithm of classical shadow, we get intuition.

Reconstructing a 3d object from 2d shadows.

3d object
(unknown)

light

If we collect many shadows from various directions, we can estimate the 3d object. 

shadows
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2. Classical shadow

𝜌
(unknown)

If we collect many measurements results with various basis, we can estimate the density matrix. 

𝑈
Random unitary

The idea of classical shadow:

𝑈′ 𝑈′′

෠𝑏 ෠𝑏

෡𝑏′ ෡𝑏′

Measurement result

෢𝑏′′ ෢𝑏′′

ො𝜌

෠𝑏 ෠𝑏 , ෡𝑏′ ෡𝑏′ , … , 𝑈,𝑈′, …

A set of measurement results and 
corresponding random unitary operators

Estimation of the 
density matrix
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2. Classical shadow

The quantum circuit of classical shadow:

… 𝑈𝜌

𝑈𝜌𝑈†

Consider the 𝑛 qubits system.

Outcome 

෠𝑏 ∈ 0,1 𝑛

Repeating this procedures 𝑁 times, 

1. Choose a random unitary 𝑈 ∈ 𝒰 and apply to the state :𝜌 ↦ 𝑈𝜌𝑈†

2. Perform a computational basis measurement ℳ and get outcome ෠𝑏

3. Restore the classical snapshot 𝑈† ෠𝑏 ෠𝑏 𝑈

Procedures 

𝔼𝒰,𝑏 𝑈† ෠𝑏 ෠𝑏 𝑈 = ℳ 𝜌

Ensemble average over 𝒰 and outcome 𝑏 ∈ 0,1 𝑛 True density matrix

measurement ℳ
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2. Classical shadow

𝜌 = 𝔼𝒰,𝑏 ො𝜌

(where ℳ−1 depends on the unitary ensemble 𝒰 )

ො𝜌 = ℳ−1 𝑈† ෠𝑏 ෠𝑏 𝑈Classical shadow : 

The idea of classical shadow

“A classical guess of the density matrix based on a single measurement outcome”

The ensemble average gives the true density matrix

Classical shadow is a classical approximation of the density matrix constructed 
from a measurement outcome.

𝜌 𝑈𝜌𝑈†
measurement ℳ

෠𝑏 ෠𝑏
random unitary

(state collapses)
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2. Classical shadow

Example of 1-qubit classical shadow ො𝜌

For 𝑛 = 1 case, we can choose 𝒰 as Clifford random unitaries Cl 2 : 

ො𝜌 = ℳ−1 𝑈† ෠𝑏 ෠𝑏 𝑈 = 3𝑈† ෠𝑏 ෠𝑏 𝑈 − 𝐼 , where 𝑈 ∈ Cl 2

Cl 2 = 𝑈 ∈ U 2 ∀𝑃 ∈ 𝒫,𝑈𝑃𝑈† ∈ 𝒫} ,where 𝒫 is Pauli group 

Classical shadow per single measurement:

It is mathematically shown that this classical shadow reproduces the density matrix 𝜌. 

𝔼𝒰,𝑏 ො𝜌 = 𝜌

※This result follows from the fact that Clifford unitaries form a unitary 2-design.

𝔼𝒰,𝑏 ො𝜌 = 𝔼𝒰 ෍

𝑏

𝑏 𝑈𝜌𝑈† 𝑏 3𝑈† 𝑏 𝑏 𝑈 − 𝐼 = 𝜌

probability
Unitary 2-design

( )
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2. Classical shadow

Algorithm
1. Perform the experiment 𝑁 times and collect the classical shadows:

2. Estimate the expectation values of 𝑀 observables using a classical computer :

3. Increase the number of experiments 𝑁 until the statistical error reaches the 

desired accuracy 𝜖 .   

෠𝒪𝑖 =
1

𝑁
σ𝑘=1
𝑁 Tr 𝒪𝑖 ො𝜌𝑘 , for 𝑖 = 1, … ,𝑀

ො𝜌1, ො𝜌2, … , ො𝜌𝑁 , where  ො𝜌𝑘 = ℳ−1 𝑈𝑘
† ෢𝑏𝑘 ෢𝑏𝑘 𝑈𝑘 , for 𝑘 = 1,…𝑁

Based on this idea, the following algorithm was proposed:

A finite number of classical shadows is sufficient to estimate observables. 

[Huang-Kueng-Preskill 2020]

※ The required classical memory is 𝒪 𝑁𝑀
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2. Classical shadow

Theoretical guarantee of Classical shadows:

• The number of required measurements scales only logarithmically with the number of observables 𝑀.

• The shadow norm determines the difficulty of estimating each observable.

Theorem 1 [Huang-Kueng-Preskill 2020]

To estimate 𝑀 observables up to accuracy 𝜖, the required number of measurements 𝑁 is given by:

𝑁 = 𝒪
log 𝑀

𝜖2
max
𝑖

𝑂𝑖 shadow

where 𝑂𝑖 shadow depends on the unitary ensemble 𝒰 used to generate the classical shadows.

𝒰 = Cl 2𝑛 ⇒ 𝑂𝑖
2
shadow ≤ Tr 𝑂𝑖

2

𝒰 = Cl 2 ⊗𝑛 ⇒ 𝑂𝑖
2
shadow ≤ 4𝑘 𝑂𝑖

2

Examples of shadow norms for different unitary ensembles: 

where 𝑘 denote the locality of 𝑂𝑖 ,  e.g. 𝑂𝑖 = 𝑋1⊗𝑌2 ⇒ k = 2.

𝑂𝑖 : operator norm
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3. Applications and numerical results

Application 1 : 1d transverse Ising model

𝐻 = 𝐽෍

𝑗

𝑍𝑗𝑍𝑗+1 + ℎ෍

𝑗

𝑋𝑗

Goal : two-point functions 𝑍0𝑍𝑖 for 𝑖 = 1,… ,𝑁site = 50

Quantum state tomography

,where we set 𝐽 = ℎ.

Exact results(DMRG)

Classical shadow

We use 𝒰 = Cl 2 ⊗𝑁site and 𝑁 = 219 measurement snapshots.

The classical shadow predictions perfectly match 
the exact results.

𝑖

𝑍0𝑍𝑖

[Torlai, et al 2018]
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3. Applications and numerical results

Application 2: 2d Heisenberg model

𝐻 = 𝐽෍

⟨𝑖,𝑗⟩

𝜎𝑖 ⋅ 𝜎𝑗 with an 8 × 8 triangular lattice

Goal: two-point functions 𝜎𝟎 ⋅ 𝜎𝑖 for 𝑖 = 𝑖1, 𝑖2

The classical shadow predictions perfectly match the exact results.

𝑖1

𝑖2

𝜎𝟎 ⋅ 𝜎𝑖

Exact Tomography Classical shadow
[Torlai, et al 2018]
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3. Applications and numerical results

Computational cost of application 1 and 2

error

Computational Cost

Classical shadow

Tomography 

22/26



3. Applications and numerical results

Computational cost of application 1 and 2

error

Computational Cost

Classical shadows achieve comparable accuracy with significantly fewer measurements.

Classical shadow

Tomography 
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3. Applications and numerical results

Application 3: Ground state energy estimation in the Schwinger model

ℒ = −
1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 + 𝑖 ത𝜓𝛾𝜇 𝜕𝜇 + 𝑖𝑔𝐴𝜇 𝜓 −𝑚 ത𝜓𝜓

Jordan-Wigner transformation

𝐻spin : spin Hamiltonian

VQE
1. Set ansatz 𝜓 𝜃 , 𝜃: parameters

2. Calculate 𝐻spin 𝜃
by a quantum computer

3. Update parameters 𝜃 to minimize the energy 𝐻 𝜃

Goal: ground state energy  

The ground state of the Schwinger model was studied by VQE in [Kokail, C. et al. 2019].

We compare classical shadow-based energy estimation with the standard method using direct measurements 
as implemented in [Kokail, C. et al. 2019].
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3. Applications and numerical results

Application 3: Ground state energy estimation in the Schwinger model

Direct measurements 

Scaling of the number of measurements required to achieve a fixed error.

Classical shadow
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3. Applications and numerical results

Application 3: Ground state energy estimation in the Schwinger model

Direct measurements 

Scaling of the number of measurements required to achieve a fixed error.

Classical shadow

Classical shadow significantly reduce the required 
number of measurements
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3. Applications and numerical results

Application 4: Estimating entanglement Rényi entropy

Using classical shadows, one can estimate the purity Tr 𝜌𝐴
2 ,which is related to the second Rényi entanglement 

entropy.

The number of required measurements:

𝑁 = 𝒪
2𝑛

𝜖2
𝑛: number of qubits
𝜖: desired statistical error

This cost arises from the non-local nature of entanglement, and the authors showed that 
it is unavoidable due to fundamental information-theoretical bounds.

Tr 𝜌𝐴
2 ≈

1

𝑁 𝑁 − 1
෍

𝑖≠𝑗

𝑁

Tr ො𝜌𝐴,𝑖 ො𝜌𝐴,𝑗

ො𝜌𝐴,1, … , ො𝜌𝐴,𝑁 : classical shadows on subsystem 𝐴. 

Estimation of purity by classical shadows

Calculated via pairwise trace overlaps between shadow estimates.
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4. Summary

• Classical shadow efficiently estimates many observables from quantum states.

• Only 𝒪 log𝑀 measurements are needed to estimate 𝑀 observables 𝒪𝑖 = Tr 𝒪𝑖 𝜌 .
→Exponential speed up! 𝑖 = 1,2, …𝑀

• Requires only shallow quantum circuits →Suitable for near-term quantum computer

• Estimating non-local properties such as entanglement requires many measurements,
but it is efficient among methods that do not use ancilla or additional qubits.

• Classical shadows are promising tools for studying quantum many-body systems 
and quantum field theory simulations on near-term quantum computers.
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Appendix

𝒰 = Cl 2𝑛 ⇒

𝒰 = Cl 2 ⊗𝑛 ⇒

The concrete form of classical shadows



Appendix

Random unitary ensemble 𝒰 should be tomographically complete.

For 𝜌 ≠ 𝜎, there exist 𝑈 ∈ 𝒰 and 𝑏 s.t.

𝑏 𝑈𝜌𝑈† 𝑏 ≠ 𝑏 𝑈𝜎𝑈† 𝑏
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