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1. Introduction

Quantum computer Simulation of Quantum Physics

A

Unit of information:

—Qubit Quantum many body system

’ { « Lattice quantum field theory

a|0) + B|1) IBM Q When analytical calculations are not f_easible,
observables (0) are computed numerically

New computational methods that have Energy, correlation function etc
been developed recently.

Today’s topic :

Efficiently extracting many physical observables from a quantum computer.
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1. Introduction

Why do we need quantum computers?

The sign problem

« |n lattice QFT, people use the path-integral formalism and observables are typically evaluated

using Monte Carlo integration
« At finite chemical potential or real-time dynamics, the path-integral weight becomes complex.

« As aresult, important sampling breaks down — sign problem
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1. Introduction

Why do we need quantum computers?

The sign problem

« |n lattice QFT, people use the path-integral formalism and observables are typically evaluated
using Monte Carlo integration
« At finite chemical potential or real-time dynamics, the path-integral weight becomes complex.

« As aresult, important sampling breaks down — sign problem

The limitations of tensor networks
« To circumvent the sign problem, researchers are turning to the Hamiltonian formalism.

« Tensor network methods work well in (1+1)D systems where the entanglement follows an

area law.

« However, they become inefficient in higher dimensions or in systems exhibiting volume-law

entanglement, where the required bond dimension grows rapidly.
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1. Introduction

Why do we need quantum computers?

The sign problem

The limitations of tensor networks

Quantum computers
« Quantum computers are the computers built from quantum-mechanical components
that obey the laws of quantum mechanics.
« Ann-qubit system can represent a 2™*-dimensional Hilbert space directly.
« They are free from the sign problem.
 Highly entangled states can be prepared naturally.

 Real-time quantum dynamics is implemented directly as unitary time evolution.
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1. Introduction

Basics of quantum computer

Quantum states - Super position

) =@l )/
D @ool00) + ap1]01) + a14|10) + a14|11)

1-qubit state
2-qubits state

Basic quantum gate operators

pe (1) =0 Y= P

CNOT = |0)0| @ 1 + |11 ® X, -

ﬂ)uantum circuit notation\

[Y) — U — Uly)

U=HXY .. etc

@
CNOT =

N
/

_ S,

X Arbitrary unitary operators can be written in terms of basic quantum gates.
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1. Introduction

Quantum computation consists of three essential steps:

f

(1)Prepare an initial state |0)®"

(2)

(TCLHLY\/#
0) |- b A
i\RI Hj/74

(3)

<  (2)Apply a sequence of quantum gates

(3)Measure in the computational basis

»

Outcome
|b1b2 ...bn)

T binary number

By repeatedly performing these three steps and collecting statistics from the measurement

outcomes, we carry out quantum computation.
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1. Introduction

The simple example : calculation of (Z)

Let us consider estimating expectation value (Z) for the quantum state |y) = U |0) .

|0) with probability |a|?
|O> U /74 » Qutcomes :

(measurement) |1) with probability |B]|?
[Y) = a|0) + B[1)
Repeating this experiment many times, we can estimate |a|? and |S]? by
2 Ny 2 Ny Nqnhots : the total number of experiments
a2 = =2,  |BI* ~ shots
Nghots Nghots No/1 : the number of measurement outcome 0/1

Then, the expectation value (Z) is estimated as follows;
No — N;

(Z) =lal?* = |BI* =
Nshots
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1. Introduction

When we extend to multi-qubits systems, the computational possibilities expand dramatically.

By introducing ancilla qubits (auxiliary qubits), we can implement more sophisticated operations.

ancilla qubits— [0) — H T H— A —(U)

V) —F U

Hadamard test :

Examples of quantum algorithms:
« Hadamard test : estimation of (U) for arbitrary unitary U

« SWAP test: estimation of (y|¢)
« Quantum Fourier transform : discrete Fourier transformation
« Phase estimation : estimation of eigenvalue of unitary operator

« Grover's algorithm : search algorithm for solution f(x) =1

These quantum algorithms enable us to estimate relevant quantities and address
specific computational tasks. o




1. Introduction

Let me consider the following goal.
Goal : Estimating M different physical observables, where M is large.
(0;) = Tr[0; p], (1=12,.M>1

We can estimate individual (0;) by known quantum algorithm (e.g. Hadamard test)
However::--

Problems ~N

« Naively, we need to design and execute M different quantum circuits.
—/AAWe must perform O(M) measurements.

« Many algorithms also require ancilla qubits, increasing the total number of qubits and circuit depth.
—/\Current quantum computers are still small and contain noise.

« The required gate are often complex and difficult to implement on near term quantum computers.
\ %
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1. Introduction

Quantum state tomography : reconstructing the full density matrix p of a quantum system.
[Sugiyama-Turner-Murao 2013]

~ 47
/74X,Y,Z » )= 1 Z(P \p
B = 5 i/
pP < . /74X,Y,Z 2" i=1
— P, e{l, XY, Z"
\_ /74X,Y,Z l { }
Problems N

Needs to measure in many different basis (Pauli X, Y, 2)
—/A\Required the number of measurements is 0(3™) for n-qubits system.

« Postprocessing is computationally expensive (= 0(4"))

— /A\Impractical for large system.
9 P ge sy y

» Quantum state tomography is Not efficient for estimating many observables o




1. Introduction

Goal : Estimating M different physical observables, where M is large.
(0;) = Tr|O; p], (1=12,.M>1

Estimating (0;) by know quantum Quantum state tomography
algorithm

« M different quantum circuits
o # of measurement ~O(M)
e Ancilla qubits

« Complex gate operation » 2 el EmEe
» X challenging (Not scalable)

We can estimate p directly but,

e # of measurement ~0(3")
e Classical postprocessing cost ~0(4")

Are there efficient ways to estimate many observables from a quantum system?
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1. Introduction

Goal : Estimating M different physical observables, where M is large.
(0;) = Tr|O; p], (1=12,.M>1

Estimating (0;) by know quantum Quantum state tomography
algorithm

« M different quantum circuits
o # of measurement ~O(M)
e Ancilla qubits

« Complex gate operation » 2 el EmEe
» X challenging (Not scalable)

We can estimate p directly but,

e # of measurement ~0(3")
e Classical postprocessing cost ~0(4")

Are there efficient ways to estimate many observables from a quantum system?

» CIaSSicaI Shadow [Huang-Kueng-Preskill 2020]
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1. Introduction

Short summary of classical shadow

« Estimates M different physical observables from only O(log M) measurements.

—

 Dones not use ancilla qubits or multiple copies of system.

—

* Requires only shallow randomized circuits

—

« The authors demonstrate its effectiveness across various observables,

including two-point correlation functions, energy, and entanglement entropy.

11/26



2.Classical shadow
3. Applications and numerical results
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2. Classical shadow

Before introducing the algorithm of classical shadow, let me explain a intuition.
Reconstructing a 3d object from 2d shadows.

W
light 3d object '

(unknown) (we can know)

We cannot reconstruct the 3d object from single shadow.
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2. Classical shadow

Before introducing the algorithm of classical shadow, we get intuition.
Reconstructing a 3d object from 2d shadows.

scree’ | SCreen
cu( o
light 3d object
(unknown)
L2 /4,
- /

If we collect many shadows from various directions, we can estimate the 3d object.
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2. Classical shadow

The idea of classical shadow:

A set of measurement results and
corresponding random unitary operators

(B)BL, BB, ), (U, U, ...}

5

Estimation of the
density matrix

|b)(b|
Measurement result
A 2 /

&
< U UII‘/

Random unitary (unknown)

If we collect many measurements results with various basis, we can estimate the density matrix.
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2. Classical shadow

Consider the n qubits system.

The quantum circuit of classical shadow:
measurement M

S = Outcome
P T U ) wp |p)elonn
\; A
UpUT
Procedures

1. Choose a random unitary U € U and apply to the state :p = UpUT
2. Perform a computational basis measurement M and get outcome |b)
3. Restore the classical snapshot Ut|b)(b|U

Repeating this procedures N times,

Eup|UT|b)b|U] = 7o)

Ensemble average over U and outcome b € {0,1}" True density matrix 15/26




2. Classical shadow

random unitary measurement M’

p : U’DUT (state CoIIapses): ‘B><B‘

The idea of classical shadow

Classical shadow : p = M~1(Ut|b){b|U)
“A classical guess of the density matrix based on a single measurement outcome”

(where M~1 depends on the unitary ensemble U )

¥

P = Eu,b[ﬁ]
The ensemble average gives the true density matrix

Classical shadow is a classical approximation of the density matrix constructed

from a measurement outcome. /
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2. Classical shadow

Example of 1-qubit classical shadow p

Forn =1 case, we can choose U as Clifford random unitaries CI(2) :

Cl(2) ={U e U(Q)|VP € P,UPUT € P} ,where P is Pauli group

Classical shadow per single measurement:

p =M (Ut|b)b|U) =3UT|bNb|U —1 , where U e Ci(2)

It is mathematically shown that this classical shadow reproduces the density matrix p.

Eq p 1ol =p

X This result follows from the fact that Clifford unitaries form a unitary 2-design.

Eyp[p] = Ey [y(bIUpUTIb) (3Ut|bXblU = 1) =p
b probability

Unitary 2-design 17/26




2. Classical shadow

Based on this idea, the following algorithm was proposed: [Huang-Kueng-Preskill 2020]

Algorithm

1. Perform the experiment N times and collect the classical shadows:

{P1, P2y o, Pn} » where py = MY (US| be)be|Uk), fork=1,..N

2. Estimate the expectation values of M observables using a classical computer :

~ 1 ~ .
(Oi) = Ez’,;’ﬂ Tr[O;pil, fori=1,..,M

3. Increase the number of experiments N until the statistical error reaches the

desired accuracy €.

X The required classical memory is O(NM)

A finite number of classical shadows is sufficient to estimate observables.
18/26




2. Classical shadow

Theoretical guarantee of Classical shadows:

Theorem 1 [Huang-Kueng-Preskill 2020]

To estimate M observables up to accuracy e, the required number of measurements N is given by:

N =0 ( log(M)

2 ml,aXHOL'”shadow>

where ||0;llshadow depends on the unitary ensemble U used to generate the classical shadows.

Examples of shadow norms for different unitary ensembles:

U=_Cl2") =0l Tr|07]

shadow =
— 2
U= Cl(2)®n = ”01,” shadow <

where k denote the locality of 0;, 2.0, =X; ® Y, = k = 2.

4% 0;11? 10;]| : operator norm

The number of required measurements scales only logarithmically with the number of observables M.

The shadow norm determines the difficulty of estimating each observable.
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3. Applications and numerical results

Application 1 : 1d transverse Ising model

H =]szZj+1 + hEX] ,where we set | = h.
J J

Tt (OMRG) Goal : two-point functions (Z,Z;) fori =1, ..., Ngjte = 50

A NNQST
O  Shadow

—— Exact results(DMRG)
A Quantum state tomography [Torlai, et al 2018]
() Classical shadow

We use U = CI(2)®Nsite and N = 212 measurement snapshots.

Two-point function (6 ¢ %)

04 | The classical shadow predictions perfectly match
L the exact results.

0 10 20 30 40 50
Lattice site —— |
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3. Applications and numerical results

Application 2: 2d Heisenberg model

H=]ZE{'E]? with an 8 x 8 triangular lattice

(6,J)
Goal: two-point functions (ag - ;) for i = (i, i,)
(0g - 07)
0 . Truth (DMRG) 0 . NNQST 0 . Shadow 0.9
1- 1- 1- 06
2 21 2 -
3 - 3 - 3 - 0.3
4 4 - 4 .
5 5 5 -
l2 6- 6 - 6 - - 03
‘ 7 7 - 7 - .
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
— "l Exact Tomography Classical shadow

[Torlai, et al 2018]

The classical shadow predictions perfectly match the exact results. 21/26




3. Applications and numerical results

Computational cost of application 1 and 2

035 NNQST (1D TFIM) A
’ --A+ NNQST (2D Heisenberg) .
S —o- Shadow (1D TFIM)
® 0.30 | —4& Shadow (2D Heisenberg) "
[} %
g R A
error g ;5| 4 :
a 5
g o) : E
y— ‘ '.. -
5 020 |\ __ A Tomography
s ‘A‘ . .
= - A
o 0.15 - & Y o ;
c \ ‘. -
o \ . g
§ \ “ e A
= A *.
S 0.10 - \ . :
5 '\\A e, A
¢ .. "
g R .
0.05 - *\ o, .
. “ "'. A
Classical shadow Y
0 L L LR L | LRRLLL LR R L | LA B |
102 10" 10° 10" 10* 10* 10* 10°  10°

Classical post-processing time (s)

> Computational Cost
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3. Applications and numerical results

Computational cost of application 1 and 2

035l " NNQST (1D TFIM) A
’ --A+ NNQST (2D Heisenberg)

S —o- Shadow (1D TFIM)
® 0.30 | —4& Shadow (2D Heisenberg) "
@ "
g R A

eIror = 55 4
Q. -
S 1 ° ’
2 | 1‘ . . h
S 0.20 b . A Tomograp y
H A : /
= - A
o 0.15 - § Y o ;
c \ ., .
o \ . §
§ X % ) A
S 0.10 ) " 2
5 W « A

; . g
é LYY ‘e 2
0.05 'Y o u
o ®e
. 'y (]
Classical shadow -
0

U LU L L L L L
102 10' 10° 10" 10* 10° 10* 10°  10°
Classical post-processing time (s)

> Computational Cost

Classical shadows achieve comparable accuracy with significantly fewer measurements.
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3. Applications and numerical results

Application 3: Ground state energy estimation in the Schwinger model

Jordan-Wigner transformation

L= —% E F* +iYy*(0, + igA, )y — myn) ‘ Hgpin : spin Hamiltonian
Goal: ground state energy

The ground state of the Schwinger model was studied by VQE in [Kokail, C. et al. 2019].
VQE
1. Set ansatz |¢(0)), 0: parameters
2. Calculate (Hgpin), by @ quantum computer
3. Update parameters 6 to minimize the energy (H)g

We compare classical shadow-based energy estimation with the standard method using direct measurements

as implemented in [Kokail, C. et al. 2019].
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3. Applications and numerical results

Application 3: Ground state energy estimation in the Schwinger model

Scaling of the number of measurements required to achieve a fixed error.

Shadow (derandomized) 6aSd

B Shadow (randomized) .
—e— Hand-crafted (original) (ref. ) — Direct measurements

(x12.6)

3.0 x 10* -
2.5x 10*
2.0x 10*

1.5 x 10* -

i B i

No. of experiments (linear scale)

1.0 x 10* -
Classical shadow

0.5 x 10* -

50 100 150
System size (no. of lattice sites)
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3. Applications and numerical results

Application 3: Ground state energy estimation in the Schwinger model

Scaling of the number of measurements required to achieve a fixed error.

Shadow (derandomized) 6aSd

B Shadow (randomized) .
—e— Hand-crafted (original) (ref. ) — Direct measurements

(x12.6)

3.0 x 10* -

2.5x 10*

Classical shadow significantly reduce the required
number of measurements

2.0x 10*

1.5 x 10* -

- --E-- -
'-'F = --8
1.0 x 10* - \

0.5 x 10* -

No. of experiments (linear scale)

Classical shadow

ki — N - ) — — e — = = —

50 100 150
System size (no. of lattice sites)
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3. Applications and numerical results

Application 4: Estimating entanglement Rényi entropy

Using classical shadows, one can estimate the purity Tr[p4] ,which is related to the second Rényi entanglement
entropy.

Estimation of purity by classical shadows

N
1
Tr[p;] = NV =) z Tr|paiPa;]

i#j
{ﬁA,l, ...,ﬁA,N}: classical shadows on subsystem A.

Calculated via pairwise trace overlaps between shadow estimates.

The number of required measurements:

N=0 2" n: number of qubits
— U\ e2 e: desired statistical error

This cost arises from the non-local nature of entanglement, and the authors showed that
it is unavoidable due to fundamental information-theoretical bounds.
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4. Summary




« Classical shadow efficiently estimates many observables from quantum states.

 Only O(log M) measurements are needed to estimate M observables (0;) = Tr|0; p].
—Exponential speed up! i=12,..M

« Requires only shallow quantum circuits —Suitable for near-term quantum computer

« Estimating non-local properties such as entanglement requires many measurements,
but it is efficient among methods that do not use ancilla or additional qubits.

« Classical shadows are promising tools for studying qguantum many-body systems
and quantum field theory simulations on near-term quantum computers.
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Appendix

/ The concrete form of classical shadows \

u=cen = p= 2"+ 1DUTDY|U -1

u=aEe = /= (3U}\3j><?3j\Uj - ]1)

\_ " /




Appendix

4 )

Random unitary ensemble U should be tomographically complete.

For p # o, there exist U € U and b s.t.

(b|UpUT|b) = (b|UcUT|b)
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